

Methanol (CH₃OH) masers & absorption features in massive star formation regions

Wenjin Yang (杨文锦) Nanjing University

Main collaborators: Yan Gong, Karl Menten, Friedrich Wyrowski, James Urquhart, Christian Henkel, Timea Csengeri, Simon Ellingsen

Background for methanol masers
3mm methanol maser survey toward ATLASGAL clumps
Methanol absorption (107 GHz absorption toward the CMB; Redshifted methanol absorption trace infall)

1.1 Classification of CH₃OH masers (associated objects + pumping mechanism)

Class I CH₃OH masers: (~650)

Scattered around YSOs (up to 1 pc) Collisional pumping astrophysical shocks

Transitions: 9.9, 25.0, 25.5, 25.9, 26.8, 27.4, 36.2, 44.1, 84.5, 95.2, 104.3, 146.6 GHz ... (e.g., Chen et al. 2011, 2012, 2013, Voronkov et al. 2006, 2014, Yang et al. 2017a)

Class II CH₃OH masers: (~1000) Located in the nearest vicinity of YSOs Radiative pumping ONLY in high-mass SFRs

Transitions: 6.7, 12.2, 20.0, 23.1, 29.0, 37.7, 38.3, 38.5, 86.6, 86.9, 107.0, 108.8 GHz ... (e.g., Menten et al. 1991, Caswell et al. 1995, Yang et al. 2017b, 2019)

GLIMPSE IRAC 8.0 4.5 3.6 µm 24 µm contour ♦ 6.7 GHz class II maser + 44 GHz class I maser Cyganowski+(2009)

1.2 Class I CH₃OH maser pumping mechanism

Collisional rates and selection rules —> $\Delta k = 0$, a dependence upon ΔJ as $1/\Delta J$ (Lees+1974)

When collisional excitation dominates:

E- type CH₃OH: k = -1 over-populated relative to k = 0 or -2 Maser action in the $J_{-1} \rightarrow (J-1)_0$ E lines (36, 84 GHz..), $J_{-1} \rightarrow (J-1)_2$ E lines (104.3 GHz), $T_{ex} < 0$ Anti-inversion (i.e. enhanced absorption) at $2_0 \rightarrow 3_{-1}$ E (12.2 GHz), $0 < T_{ex} < T_{CMB}$

A- type CH₃OH: K = 0 over-populated relative to K = 1 Maser action in the $J_0 \rightarrow (J-1)_1$ A+ lines (44, 95 GHz..) Anti-inversion at $5_1 \rightarrow 6_0$ A+ (6.7 GHz) and $3_1 \rightarrow 4_0$ A+ (107 GHz)

1.2 Nine CH₃OH maser transitions at 3 mm (84-116 GHz)

 Wide spread class I masers at 84, 95 GHz 84 GHz 129 known (e.g., Breen+2019)
 95 GHz 534 known (e.g., Chen+2011, 2012, 2013, Yang+2017)

• Rare class II masers at 85.6, 85.6, 86.9, 104.1, 107 and 108 GHz.

107 GHz

25/175 known 6.7 GHz masers;
5 sources show absorption (Val'tts+1995,1999, Caswell+2000, Minier+2002)

85.6, 86.6, 86.9 GHz masers **4,4,3** known, observing targets < 150 (e.g. Cragg+2001, Ellingsen+2003)

104.1 and 108 GHz maser **ONLY** found in G345.01+1.79 (Val'tts+1998, Ellingsen+2012)

Rare class I maser at 104.3 GHz

5 known

104.3 GHz mopra survey: a detection rate of 2/69 ~3% (Voronkov 2007)

1.3 Motivations

1. Study these so far fewer detected and less studied masers

Large/Complete survey \rightarrow new maser sources Rare maser species \rightarrow unusual excitation conditions, tracing a short stage

2. Why we need multiple transitions for one source?

Line ratios usually gives stronger constraints on physical conditions than one single line

 3. Study the statistical relationships between class I masers and shocks 84, and 95 GHz masers in a large sample survey + shock tracer (such as SiO)

2.1 Targeted sample: massive ATLASGAL clumps

- APEX Telescope Large Area Survey of the Galaxy an unbiased 870-µm sub-millimetre continuum survey (300° < I < 60°, |b| < 1.5°)
- A large inventory of dense molecular clumps (~10 000 clumps; e.g. Csengeri+2014)
- Full evolutionary stages (from starless to evolved HII regions, e.g. Urquhart+2022)
- IRAM observations at 3mm (84 —116 GHz) toward 408 ATLASGAL clumps (6° < I < 60°) The brightest ATLASGAL clumps with 1) infrared bright; 2) embedded massive (proto)stars; 3) 8 µm dark + 24 µm bright; 4) 8 and 24 µm dark → cover full evolutionary stages
- Observing dates: 2010.05 2012.10
- Beam size: 29 23 arcsec, Vres ~ 0.8 0.6 km/s, typical 1σ ~ 0.2 Jy
- SiO (Csengeri+2016)
- The largest survey to search for 84, 85.5, 86.6, 86.9, 104.1, 104.3, 107 and 108 GHz masers

2.2 Overview of CH₃OH maser detections

class I maser velocity alignments

Class II CH₃OH masers: 11 (8 new) @107 GHz; Known: $25 \rightarrow 33$ No sources show maser emission at 85.5, 86.6, 86.9, 104.1 and 108 GHz

107 GHz maser velocity aligns with the strongest 6.7 +12.2 GHz

[Yang+ in prep.]

[Yang+ 2023, A&A, 675, A112]

2.3 The properties of class I masers are regulated by shock properties traced by SiO

Stronger maser with SiO wings

2.3 ATLASGAL clumps properties: correlations

Positive correlations: Lbol, Mclump, N(H2) **No statistically correlation**: L/M, Tdust, n(H2)

2.3 ATLASGAL clumps properties: comparisons

Clumps with 104.3 GHz masers generally show brighter Lbol, warmer Tdust, larger L/M ratios, and denser environments.

2.4 Co-spatial line ratios better constrain conditions

Black contour: $T_{R104.3}/T_{R84}$ White contour: T_{R95}/T_{R84}

• myRadex (a RADEX analog; Du 2022)

Maser feature at 15 km/s in G10.34-0.14
 → T_{kin} = 57±3 K
 n(para-H₂) = 7.9(±2.5)×10⁵ cm⁻³

2.5 The evolutionary stage of masers

3.1 107 GHz methanol absorption

19 newly detected absorption features → 24 known 107 GHz absorption

protostellar

3.2 Redshifted CH₃OH absorptions trace infall motions in AGAL010.624–00.384 (W31C)

Bright continuum background (f-f) + over-cooling \rightarrow enhance the absorption lines' detectability

14 methanol lines show redshifted absorption features
 → trace infall motions within HMSFRs hosting bright HII regions

[Yang+ 2022, A&A, 658, A192]

Summary

Highlighted detections

4 (4 new) rare class I masers at 104.3 GHz (known $5 \rightarrow 9$) 11 (8 new) rare class II masers at 107 GHz (known $25 \rightarrow 33$) 19 new sources with 107 GHz absorption features \rightarrow anti-inversion

Redshifted methanol absorption trace infall motions in AGAL010.624–00.384 (W31C)

- Rare masers appear to trace a short and evolved stage
- \bullet The properties of class I CH_3OH masers are regulated by SiO traced shocks
- Physical conditions can be better constrained in regions with multiple class I CH₃OH masers

Thanks for your attention!