

Maser Investigation toward Off-Plane Stars (MIOPS): detection of SiO masers in the Galactic thick disk and halo

Wenjin Yang

Collaborators: Yuanwei Wu (PI), Yan Gong, Nicolas Mauron, Bo Zhang, Karl M. Menten Xiaofeng Mai, Dejian Liu, Juan Li, Jingjing Li

MPIFR Group Talk @ 2023-Oct-31

Galactic structures

Halo

very old, metal-poor stars randomly oriented orbits

Thin disk (~120-300 pc) young stars, metal-rich, circular

Thick disk (~500-1400 pc) older, lower metallicity stars, more eccentric/inclined orbits Bulge/bar A dense mix of old and intermediate-age stars

Galactic Archaeology

Stars are "fossils"
 Motions → where they came from
 Age → when they were born
 Chemical → reflect chemical compositions of ISM which they formed

Substructures in halo → debris from accretion events

Accurate 6D information → formation history of the milky Way

VLBI astrometry pinpoint spiral arms

The BeSSeL Survey + VERA project Aim: study the spiral structure and kinematics of the Milky Way

AGBs + SiO masers

Asymptotic giant branch (AGB) stars: a few Gyr & widely distributed & host maser > 2000 O-rich AGBs host SiO masers OH & SiO masers trace **stellar velocity**

(e.g., Reid & Dickinson et al. 1976, Jiang et al. 1995, Sevenster 1999, Wu et al. 2018, Iwanek et al. 2023)

- **Bulge Asymmetries and Dynamical Evolution BAaDE** survey ~28000 AGB/RGBs in the Galactic bulge and inner Galaxy for SiO maser emission at 7 & 3mm -> Dynamics of the Milky Way bar and bulge (Trapp et al. 2018; Stroh et al. 2018, 2019; Lewis et al. 2020)
- No masers in streams were detected (Deguchi et al. 2010, Wu et al. 2018, 2022).

An off-plane O-rich AGBs catalog:

417 stars belong to the thick disk, the halo, and the Sgr stream (Mauron et al. 2019) As a first step

Find off-plane SiO masers → SiO maser VLBI measurements Motivation

- accurate distance, proper motions (6D)
- → dynamics of the thick disk, halo (even streams)
- → formation/merge history of the Milky Way

Observations

- Targets: 102 AGBs from Mauron et al. (2019)
 5< corrected Ks < 11 → Faint stars
- Targeted lines: SiO J=1–0, v=1 (43.122030 GHz)
 v=2 (42.820480 GHz)
- **Obs. dates**: 2022 Sep 2023 Feb
- · rms:

52 stars, ~0.04 Jy @ 0.27 km/s (Effelsberg-100 m) 50 stars, ~0.03 Jy @ 0.21 km/s (Tianma-65 m)

Detection

- Narrow line profile → maser
 All new maser detections
- No stellar radial velocity given in the APOGEE DR17, RAVE DR6, Gaia DR3
 Firstly provide the stellar velocity for the faint stars
- Three SiO masers with velocities < -100 km/s clearly offset circular motions

Revisit distances → Locations

WISE Period-Luminosity Relations dist. (Iwanek et al. 2023)											
Gaia DR3 corrected parallax			GC		dist.	Gaia DR3 proper motions			Peculiar motions		
Name	Parallax	$D_{\rm m-PLR}$	$D_{ m adopt}$	R	Ζ	$\mu_{\mathbf{x}}$	μ_{y}	$V_{\rm LSR}$	$U_{ m s}$	$V_{ m s}$	$W_{ m s}$
	(mas)	(kpc)	(kpc)	(kpc)	(kpc)	$({\rm mas}~{\rm yr}^{-1})$	$(mas yr^{-1})$	$(\mathrm{kms^{-1}})$	$(\mathrm{kms^{-1}})$	$({\rm kms^{-1}})$	$({\rm kms^{-1}})$
G068.881-24.615	0.0792 ± 0.1530	$4.79 {\pm} 1.07$	5.1 ± 1.7	$8.1 {\pm} 0.7$	$-2.1{\pm}0.7$	$1.301{\pm}0.076$	$-6.217{\pm}0.066$	-136.0	-184.61 ± 7.50	-2.73 ± 18.22	-33.52 ± 27.03
G070.384-24.886	0.2647 ± 0.1521	$6.42 {\pm} 1.63$	5.5 ± 1.7	$8.3 {\pm} 0.7$	-2.3 ± 0.7	$-4.021{\pm}0.086$	$-5.380{\pm}0.082$	-112.6	$-92.18{\pm}31.43$	$69.83{\pm}20.85$	44.46 ± 5.30
G076.137 - 23.049	0.3277 ± 0.3549	$4.93 {\pm} 1.13$	$4.5 {\pm} 1.7$	$8.4{\pm}0.7$	$-1.8{\pm}0.7$	$-2.345{\pm}0.108$	$-3.974{\pm}0.098$	-50.0	-56.83 ± 7.42	$-2.36 \pm \ 3.14$	$11.07 \pm \ 6.20$
G084.453 - 21.863	0.2581 ± 0.0869	$5.96 {\pm} 1.33$	5.1 ± 1.2	$9.2{\pm}0.6$	$-1.9{\pm}0.5$	$-1.759{\pm}0.064$	$-4.104{\pm}0.056$	-154.9	$-128.78 {\pm} 14.34$	$47.61 {\pm} 10.26$	$17.56 {\pm} 11.18$
G094.313-33.255	$0.3735 {\pm} 0.2583$	$2.27{\pm}0.66$	2.4 ± 1.2	$8.6{\pm}0.5$	$-1.3 {\pm} 0.7$	$1.580 {\pm} 0.100$	$-5.730{\pm}0.098$	-86.6	$-102.64{\pm}12.92$	$1.02{\pm}~5.44$	$-2.80{\pm}27.72$
G160.648 - 08.846	0.6016 ± 0.1818	$4.06{\pm}0.98$	$2.9 {\pm} 1.4$	$10.9 {\pm} 1.3$	$-0.4{\pm}0.2$	$0.185 {\pm} 0.150$	$-1.859{\pm}0.091$	-33.5	-15.14 ± 7.35	$13.79 \pm\ 7.04$	$-3.91 \pm \ 6.40$
G165.131-13.616	0.1581 ± 0.1387	$6.07 {\pm} 1.31$	5.7 ± 1.6	$13.6 {\pm} 1.6$	$-1.3 {\pm} 0.4$	$0.086 {\pm} 0.115$	$-1.818{\pm}0.072$	-58.3	$-36.11{\pm}13.97$	$34.92{\pm}~6.45$	-14.36 ± 13.05
G208.465 - 30.837	0.3344 ± 0.2696	$2.73 {\pm} 1.06$	2.8 ± 1.2	$10.4 {\pm} 1.0$	$-1.4{\pm}0.6$	$3.736 {\pm} 0.115$	$-0.374{\pm}0.094$	16.3	$-35.35{\pm}12.20$	$0.20{\pm}~4.52$	$26.55{\pm}14.09$

With large uncertainties!

 Thin disk scale: ~120 to 300 pc; Thick disk scale: ~500 to 1400 pc (e.g., Gilmore & Reid 1983; Juri´c et al. 2008; de Jong et al. 2010)
 → probably located in the thick disk (except for G160)

 $\sqrt{U_s^2 + V_s^2 + W_s^2} \, > \, 180 \ {\rm km \, s^{-1}}$

(e.g., Venn et al. 1994, Nissen & Schuster 2010)

→ G068 is likely to locate in the halo

Projections of 3D positions and 3D velocities

Sources that offset circular motions

- A flat Galactic rotation curve $R_0 = 8.15 \pm 0.15 \text{ kpc}$ $\Theta_0 = 236 \pm 7 \text{ km/s}$ (Reid et al. 2019)
- Assume a velocity dispersion of 30 km/s in $U_{\rm S}$, $V_{\rm S}$, $W_{\rm S}$
 - Monte Carlo analysis probability of LSR velocities if star follows circular motions

-100

-80

120

- SiO masers are newly detected toward 8 off-plane O- rich AGBs firstly provide the stellar radial velocities for these stars
- Based on the current 6D information, G068.881–24.615 is likely in Galactic halo, G160.648–08.846 is probably in the thin disk, and the other six stars are probably in the thick disk.

• Future work:

- **1. Single-dish observations to search for more off-plane masers** (Effelsberg 100m proposal approved)
- 2. VLBI measurements to determine the accurate distance (EAVN proposal submitted)